
www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 2 February 2023 | ISSN: 2320-2882

IJCRT2302408 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d366

Problem Solving Using a Cloud-Based

Code Execution Platform

Submitted By: K. Arshad, K.M. Arunachlam, P. Chandini, P.M. Dileep

Siddharth Institute of Engineering and Technology

Guide: Mr. A. Sathish, M.E, (Ph.D.)

Abstract:

The use of cloud computing has become increasingly popular in

recent years, and its benefits have been widely recognized by

programmers. This paper presents a new cloud-based code

execution platform that provides programmers with a secure and

flexible platform for executing their programs and scripts in the

cloud. Our platform supports multiple problem solving

environments, enabling programmers to execute code parallely in a

cloud environment, even if the required compiler or interpreter is

not installed locally. The platform is designed as a SaaS cloud

service model, allowing programmers to access our services

through a web application. Our platform also enables users to

create their own accounts and upload their program files, and

offers background execution of programs in our cloud servers for

up to two months. This paper provides a brief overview of the

design and implementation of the cloud-based code execution

platform and discusses the benefits it offers to programmers.

Introduction:

In the world of software development, problem-solving and code

execution are two of the most essential aspects of the process.
However, with the increasing complexity of software and the ever-

evolving nature of programming languages, executing code locally can

often become a daunting task.

Cloud computing has revolutionized the way in which we approach

software development, providing a scalable, flexible and cost-effective

solution for problem-solving and code execution. With the emergence

of cloud-based code execution platforms, programmers now have

access to a wide range of tools and services that allow them to execute
their code in a secure and efficient manner.

The purpose of this project is to develop a cloud-based code execution

platform that provides programmers with a secure and flexible

environment for executing their programs and scripts. Our platform is

designed to support multiple programming languages and

environments, enabling programmers to execute code parallely in a

cloud environment, even if the required compiler or interpreter is not

installed locally.

The platform is designed as a Software-as-a-Service (SaaS) cloud

service model, allowing programmers to access our services through a

web application. Our platform also enables users to create their own

accounts and upload their program files, and offers background

execution of programs in our cloud servers for up to two months.

In this essay, we will discuss the design and implementation of our

cloud-based code execution platform, as well as the benefits it offers to

programmers.

The use of cloud computing has become increasingly popular in recent

years, due to the scalability and flexibility it offers. Cloud computing
allows businesses and individuals to access computing resources, such

as storage and processing power, on-demand, without having to invest

in their own infrastructure.

In the field of software development, cloud computing has been

particularly useful in providing developers with the resources they need

to execute their code. This has led to the emergence of cloud-based

code execution platforms, which offer a range of tools and services to
programmers.

However, there are still some challenges associated with cloud-based

code execution platforms. One of the biggest challenges is security.

When executing code in the cloud, it is important to ensure that the

platform is secure and that the code is protected from unauthorized

access.

Another challenge is flexibility. Programmers need to be able to

execute their code in a variety of programming languages and
environments, and it is important that the cloud-based code execution

platform supports this.

Our cloud-based code execution platform has been designed with these

challenges in mind. The platform is built on top of a robust and secure

infrastructure, ensuring that the code is protected from unauthorized

access. We use a variety of security measures, such as firewalls and

encryption, to ensure that the platform is as secure as possible.

In terms of flexibility, our platform supports a wide range of
programming languages and environments, including Python, Java,

C++, and Ruby. This means that programmers can execute their code in

the environment of their choice, without having to worry about

installing compilers or interpreters locally.

The platform is designed as a SaaS cloud service model, which means

that users can access our services through a web application. This

makes it easy for programmers to access the platform from anywhere,

using any device with an internet connection.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 2 February 2023 | ISSN: 2320-2882

IJCRT2302408 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d367

 II Related Work:

In recent years, several cloud-based code-execution platforms have

been developed and deployed. However, most of these platforms are

limited to a single programming language or problem-solving

environment. This limits the usefulness of the platform for

programmers who need to work with multiple languages or

environments. Our platform addresses this limitation by providing

support for multiple problem-solving environments.

In today's digital age, online compilers have become a popular tool for

software developers and computer science students. An online compiler

is a web-based program that enables users to write, compile, and run

their code online without requiring any local installation. This essay

explores the available online compilers for executing programming

languages, their benefits, and limitations.

One of the most popular online compilers is Ideone. It supports over 60
programming languages, including C++, Java, Python, and PHP. Ideone

is particularly popular among competitive programmers because it

allows users to create private coding contests, and it provides an

extensive library of code snippets for various programming languages.

Another popular online compiler is Codepen. Codepen focuses mainly

on web development languages such as HTML, CSS, and JavaScript. It

is particularly useful for web developers because it allows them to

preview their code live in the browser. Codepen has a clean interface
and offers an extensive library of pre-built code snippets that web

developers can use to speed up their development process.

Repl.it is another online compiler that has gained a lot of popularity in

recent years. Repl.it supports over 50 programming languages and

offers features like live collaboration, code highlighting, and debugging

tools. It is particularly popular among students because it offers an

education plan with unlimited private repls, team management, and

unlimited collaborators.

However, online compilers do have some limitations. One of the

significant limitations is the dependency on the internet connection. If

the internet connection is slow or unstable, it can result in a slow

performance of the online compiler, which can be frustrating for users.

Additionally, the online compilers may not provide access to local

hardware, which may limit some functionality.

In conclusion, the availability of online compilers has revolutionized

the way software developers and computer science students execute
programming languages. These compilers have made it easier for users

to write, compile and run their code from any location with an internet

connection. The compilers mentioned above are just a few examples of

the many available online compilers. While they offer numerous

benefits, users should be aware of their limitations when considering

using online compilers as their primary programming environment.

Google Colab is a free Jupyter notebook environment that runs entirely
in the cloud. Most importantly, it does not require a setup and the

notebooks that you create can be simultaneously edited by your team

members - just the way you edit documents in Google Docs. Colab

supports many popular machine learning libraries which can be easily

loaded in your notebook.

III Proposed Methodology

Through our Cloud Based Code-Execution platform programmers can

upload and execute their programs for multiple days or even months

.We are also facilitating programmers to install their own modules

which are required for the execution of their own code. Modules

installed by one user will be available to all users and hence in future all

the users can directly execute their programs without worrying about

installation of modules .In our platform the programs of user will be

executing in the cloud even if they are logging out from our web
application. The execution of programs can be terminated manually by

the user or the program will be automatically terminated when the

execution of code in completed.

We offer background execution of programs up to two months.

Therefore users can make use of our cloud service and they can execute

their programs in cloud up to two months.

Through our Cloud Based Code-Execution platform programmers can

upload and execue their programs for multiple days or even months
(depending upon their need).We are also facilitating programmers to

install their own modules which are required for the execution of their
own code. Modules installed by one user will be available to all users

and hence in future all the users can directly execute their programs

without worrying about installation of modules.

 In our platform the programs of user will be executing in the cloud

even if they are logging out from our web application. The execution of

programs can be terminated manually by the user or the program will

be automatically terminated when the execution of code in completed.

We offer background execution of programs up to two months.
Therefore users can make use of our cloud service and they can execute

their programs in cloud up to two months.

The use of cloud-based code execution platforms has become

increasingly popular in recent years due to their numerous benefits.

Cloud computing provides a secure and flexible platform for executing

programs and scripts in the cloud, even if the required compiler or

interpreter is not installed locally. This paper presents a new cloud-
based code execution platform that aims to offer an efficient and

scalable solution for problem-solving using cloud computing.

Our platform is designed as a SaaS cloud service model that allows

programmers to access our services through a web application. The

platform supports multiple programming languages and problem-

solving environments, including C++, Java, Python, and R. It enables

users to upload their program files, and offers background execution of

programs in our cloud servers for up to two months. The platform also
offers a web-based interface for programmers to interact with their

programs and scripts.

The proposed methodology for the development of the cloud-based

code execution platform consists of three phases: requirements

gathering, system design, and system implementation.

The requirements gathering phase involves gathering the functional and

non-functional requirements of the platform. Functional requirements

include the programming languages and problem-solving environments
to be supported, the ability to execute code in the cloud, and the web-

based interface for user interaction. Non-functional requirements

include scalability, security, and performance.

The system design phase involves designing the architecture of the

platform. The platform will consist of multiple cloud servers that will

execute the code uploaded by the users. The servers will be managed by

a load balancer that will distribute the workload evenly across the

servers. The platform will also include a database for storing user
accounts and program files.

The system implementation phase involves implementing the platform's

architecture and features. The platform will be developed using a

microservices architecture that will enable the development of

independent services that can be scaled independently. The platform

will use a container orchestration system, such as Kubernetes, to

manage the deployment and scaling of the services. The platform will
also include security features, such as encryption of user data and two-

factor authentication for user accounts.

The platform's benefits include providing an efficient and scalable

solution for problem-solving using cloud computing. It enables

programmers to execute their programs and scripts in the cloud without

requiring the installation of the required compilers or interpreters

locally. The platform also enables background execution of programs

for up to two months, allowing users to execute long-running programs
without worrying about server resources.

In conclusion, the proposed methodology for the development of the

cloud-based code execution platform involves three phases:

requirements gathering, system design, and system implementation.

The platform will be developed using a microservices architecture and

will provide an efficient and scalable solution for problem-solving

using cloud computing. The platform's benefits include support for

multiple programming languages and problem-solving environments,
web-based user interaction, and background execution of programs for

up to two months.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 2 February 2023 | ISSN: 2320-2882

IJCRT2302408 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d368

Working of Programming Environments:

Python Interpreter Overview: A Python interpreter is a program that

executes Python code. When you write Python code in a file or in the

interactive shell, the interpreter reads the code, compiles it into

bytecode, and then executes the bytecode. The Python interpreter can

be used in two modes: interactive mode and script mode.

Interactive Mode: In interactive mode, the Python interpreter reads

and executes code one line at a time. The interpreter waits for the user
to enter a command, which can be a single line of code or a block of

code. The user can then see the output of the code and modify it on the

fly. Interactive mode is useful for testing small pieces of code or

exploring the behavior of Python modules and functions.

Script Mode: In script mode, the Python interpreter reads and executes

an entire file of code at once. The user can write a Python script in a

text editor or integrated development environment (IDE) and save it as
a .py file. The user can then run the script by passing the file to the

Python interpreter. Script mode is useful for larger projects, where code

is organized into multiple files and modules.

How the Interpreter Works: The Python interpreter is made up of

several components that work together to execute Python code. These

components include the lexer, parser, compiler, and virtual machine.

Lexer: The first component of the interpreter is the lexer, which is

responsible for breaking down the source code into a series of tokens.
Tokens are the smallest units of code that have meaning to the

interpreter. Tokens can be keywords, operators, literals, or identifiers.

The lexer takes the source code and converts it into a stream of tokens

that can be processed by the parser.

Parser: The parser is the second component of the interpreter. Its job is

to take the stream of tokens produced by the lexer and turn it into a

tree-like structure called an abstract syntax tree (AST). The AST

represents the structure of the code in a way that is easy for the
interpreter to understand. The parser also checks the syntax of the code

to ensure that it is valid Python code.

Compiler: Once the parser has produced an AST, the compiler takes

over. The compiler converts the AST into bytecode, which is a low-

level representation of the code that can be executed by the virtual

machine. The bytecode is stored in .pyc files, which are created the first

time a Python module is imported or when a .py file is run. The

bytecode is platform-independent, which means that it can be executed
on any computer that has a Python interpreter installed.

Virtual Machine: The final component of the interpreter is the virtual

machine (VM). The VM is responsible for executing the bytecode

produced by the compiler. The VM reads the bytecode one instruction

at a time and carries out the corresponding operations. The VM also

manages the memory used by the code and the data that it manipulates.

The Python interpreter is a complex program that performs many tasks
to execute Python code. It breaks down the code into tokens, creates an

abstract syntax tree, compiles the tree into bytecode, and executes the

bytecode on a virtual machine. Understanding how the interpreter

works can help developers write better Python code and optimize the

performance of their applications. By using the interpreter in interactive

or script mode, developers can experiment with code and build

powerful and efficient Python applications.

In Java we can see that Java is a high-level programming language used
for developing a wide range of applications, including desktop

software, mobile apps, and web applications. However, to execute a

Java program, it is essential to first compile it into machine code, which

is then executed by the Java Virtual Machine (JVM). The Java compiler

plays a crucial role in this process, and this essay will explain in detail

how the Java compiler works.

The Java compiler is a tool that translates Java source code into

bytecode, a low-level, platform-independent code that can be executed
by the JVM. When a programmer writes a Java program, they save it as

a source code file with a .java extension. The source code contains

instructions in the Java programming language that describe what the

program does. However, the computer cannot directly execute the

source code because it is not in a format that the machine understands.

To make the source code executable, the Java compiler converts the

high-level source code into bytecode, which is stored in a .class file.

The bytecode is a low-level code that is designed to be interpreted by

the JVM, which translates the bytecode into machine code that can be
executed by the processor.

The compilation process involves several stages. In the first stage, the

compiler reads the source code and checks it for syntax errors. Syntax

errors occur when the programmer uses the wrong syntax or a spelling

mistake, making the program not able to compile. If the compiler finds

any syntax errors, it stops the compilation process and reports the errors

to the programmer, indicating the line number and the nature of the

error.

Once the syntax errors are fixed, the compiler proceeds to the next

stage, which is called semantic analysis. During semantic analysis, the

compiler checks the code for logical errors such as data type

mismatches, undeclared variables, or incorrect method signatures. The

compiler also ensures that the Java code follows the rules of the Java

programming language. If the compiler finds any semantic errors, it

stops the compilation process and reports the errors to the programmer,
indicating the line number and the nature of the error.

After the semantic analysis, the compiler generates bytecode by

translating the Java source code into a sequence of instructions that the

JVM can understand. The bytecode is platform-independent, which

means that it can run on any computer that has the JVM installed.

Additionally, bytecode is compact and efficient, making it ideal for

transmission over the internet and execution on devices with limited

resources.

During the bytecode generation process, the compiler also performs a

process called optimization, which is aimed at improving the efficiency

of the code. Optimization involves techniques such as constant folding,

where the compiler replaces a calculation with a pre-calculated value,

and loop unrolling, where the compiler unrolls loops to reduce the

number of iterations. The optimizations that the compiler performs

depend on the complexity of the code and the target platform.

In conclusion, the Java compiler plays a vital role in the development of
Java applications. It takes the high-level source code written by the

programmer and converts it into low-level bytecode, which can be

interpreted and executed by the JVM. The compilation process involves

several stages, including syntax analysis, semantic analysis, bytecode

generation, and optimization. The compiler ensures that the code is

error-free, efficient, and conforms to the rules of the Java programming

language. By understanding how the Java compiler works,

programmers can develop high-quality Java applications that can run on
any platform.

Implementation:

The implementation of the Cloud Based Code-Execution Platform

involves a number of key components, including cloud servers,
programming environments, and a user-friendly web application. All

the required compilers and interpreters are already installed in the cloud

servers.

One of the most important aspects of the implementation is the choice

of cloud servers. These servers provide the necessary computational

power to run the programs uploaded by users. Our platform uses a

combination of virtual machines and containerization technologies to

enable secure, isolated environments for each user. This ensures that
each user's programs run independently without interference from other

users' programs.

Another key component of the implementation is the integration of

multiple programming environments. Our platform supports multiple

problem-solving environments, such as Python, Java, and more, making

it easy for programmers to execute their code without worrying about

compatibility issues. We achieve this by installing and configuring the

required compilers/interpreters and dependencies for each programming
environment.

In addition to the cloud servers and programming environments, our

platform also includes a user-friendly web application. The web

application provides a simple and intuitive interface for users to create

accounts, upload their program files, and execute their programs in the

cloud. We have designed the web application to be accessible and easy

to use for both novice and experienced programmers.

The implementation of the Cloud Based Code-Execution Platform
involves ongoing maintenance and updates to ensure that the platform

remains reliable, secure, and up-to-date with the latest technologies. We

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 2 February 2023 | ISSN: 2320-2882

IJCRT2302408 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d369

continuously monitor and optimize our servers to ensure maximum
performance and reliability. We also regularly update the programming

environments to ensure that the latest versions of compilers/interpreters

and dependencies are available to users.

Overall, the implementation of the Cloud Based Code-Execution

Platform is a complex process that involves multiple technologies and

components. By combining cloud servers, multiple programming

environments, and a user-friendly web application, we have created a

powerful and flexible platform that provides a secure and efficient way
for programmers to execute their code in the cloud. One of the major

benefits of our Cloud Based Code-Execution Platform is that it allows

users to execute their code in a background environment, freeing up

their local machines for other tasks. Users can also monitor the progress

of their program execution in real-time and access the output of their

programs from the web application.

Evaluation:

To evaluate the performance of the cloud-based code-execution

platform, we conducted a series of experiments in which we executed a

set of programs and scripts on the platform and compared the results to

those obtained from local installations of the same programs and

scripts. The results showed that the cloud-based platform provides

similar performance to local installations, with minimal latency and no
significant loss of functionality.

 The cloud-based code-execution platform is implemented as a SaaS

(Software as a Service) model, accessible through a web application.

Users can create their own accounts and upload their program files. The

platform uses secure methods to authenticate users and to ensure the

confidentiality and integrity of the programs and data stored on the

cloud servers. The platform also provides mechanisms for monitoring

the execution of programs, including real-time updates on the status of
the programs and notifications of any errors or exceptions that may

occur.

Conclusion:

The cloud-based code-execution platform presented in this paper

provides a secure and reliable solution for programmers who need to

access cloud-based computational resources. The platform supports
multiple problem-solving environments, and its SaaS implementation

makes it accessible from anywhere with an internet connection. The

results of our evaluations show that the platform provides excellent

performance and is a valuable resource for programmers who need to

execute their programs and scripts in the cloud.

In conclusion, the Cloud Based Code-Execution Platform provides a

secure and efficient way for programmers to execute their code in a
cloud environment. This platform supports multiple problem solving

environments and allows programmers to execute their code even if the

required compiler/interpreter is not installed locally.

Our approach is to provide a scalable and flexible solution that enables

users to upload and execute their programs for multiple days or even

months, depending on their needs. This is particularly useful for

programmers who require extensive computational power for their

projects.

With the prototype version of our SaaS cloud service model,

programmers can easily access our cloud services through a web

application, create their own accounts, and upload their program files.

Our Code-Execution platform allows for background execution of

programs in our cloud servers for up to two months, providing users

with a reliable and efficient platform.

Overall, the Cloud Based Code-Execution Platform is an innovative

solution for programmers looking to run their code in a secure, scalable,
and flexible cloud environment. As the platform continues to evolve,

we are committed to providing our users with the latest technology and

tools to support their programming needs.

Future Work:

In future work, we plan to enhance the platform to include additional

features, such as support for collaboration and sharing of programs and
data among users. We also plan to evaluate the platform's performance

in real-world scenarios, to assess its practicality and scalability. Here
are some ideas for future work that you could consider implementing:

Integrations with Other Cloud Services: Our platform could integrate

with other cloud services like cloud storage providers, databases, and

messaging services. This would allow users to easily access and utilize

these services in their programs, without having to configure and

manage the integrations themselves.

Code Collaboration Features: To enhance collaboration among users,

we could introduce code collaboration features, such as real-time
editing and code reviews. Users could work together on the same

codebase in real-time, making it easier to troubleshoot issues and share

knowledge.

Interactive User Interfaces: Interactive user interfaces could be

implemented to provide a more immersive and intuitive environment

for running code. Users could interact with their code in real-time,

visualizing data outputs and manipulating input parameters to see the
effects on the program's behaviour.

More Comprehensive Security Measures: Our platform could be

made even more secure by implementing additional security measures

such as multi-factor authentication, encryption of data at rest and in

transit, and more granular permissions and access controls.

Customization and Personalization: Providing customization and

personalization options could make the platform more appealing to

users, allowing them to configure their own environment settings,
preferences, and workflows to suit their unique needs.

References:

[1] Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-

Oriented Federation of Cloud Computing Environments for Scaling

of Application Services,” Journal of Internet Services and

Applications, vol. 5, no. 1, pp. 14–25, 2014.
[2] C. C. Liu, Y. M. Shieh and Y. H. Chiu, “A Cloud-Based Multi-

Programming Environment,” Journal of Software Engineering and

Applications, vol. 7, no. 4, pp. 218–228, 2014.

[3] J. Zhang, S. Lu, Y. Qi, and J. Wang. "A Cloud-based Programming

Environment for Large-scale Data Analysis". Journal of Parallel

and Distributed Computing, vol. 124, pp. 38-49, 2019.

[4] J. Chen, Y. Huang, Q. Peng, and H. Gao. "Cloud-Based Computing

Platform for Scientific Research". Journal of Grid Computing, vol.
16, pp. 219-231, 2018.

[5] P. Mohapatra and S. Roy. "Cloud-Based Software Development

and Code Execution Platform". IEEE Conference on Technologies

for Sustainable Development, pp. 1-5, 2018.

[6] M. R. Senapati and S. K. Rath. "Cloud Based Programming

Environment for High Performance Computing Applications". 3rd

International Conference on Intelligent Computing and
Communication, pp. 281-288, 2017.

[7] R. Li and Y. Li. "Cloud-Based Mobile Code Execution

Environment for Multi-Agent Systems". Future Internet, vol. 11,

no. 5, 2019.

[8] S. A. Haider, S. A. Zaidi, and H. M. Ahmadi. "Design and

Implementation of a Cloud-Based Programming Environment for

High Performance Computing". Journal of Cloud Computing, vol.

6, no. 1, 2017.
[9] J. P. Girard, N. H. Bonesteel, and T. V. Rajan. "A Secure, Multi-

Tenant, Cloud-Based Code Execution Environment". Journal of

Network and Systems Management, vol. 26, no. 3, pp. 475-495,

2018.

[10] L. Hu, H. Liu, and J. Huang. "Building Cloud-Based Code

Execution Platform Using Microservice Architecture".

International Conference on Service-Oriented Computing, pp. 26-

34, 2019.
[11] Y. Z. Deng, L. R. Xu, Y. Q. Yang, and S. M. Liu. "A Code

Execution Platform Based on Cloud Computing for Online Judges".

Journal of Convergence Information Technology, vol. 7, no. 5, pp.

222-229, 2012.

http://www.ijcrt.org/

